skip to main content


Search for: All records

Creators/Authors contains: "Brédas, Jean‐Luc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    2D Ruddlesden–Popper metal‐halide perovskites exhibit structural diversity due to a variety of choices of organic ligands. Incorporating bifunctional ligands in such materials is particularly intriguing since it can result in novel electronic properties and functions. However, an in‐depth understanding of the effects of bifunctional ligands on perovskite structures and, consequently, their electronic and excitonic properties, is still lacking. Here,n = 1 2D perovskites built with organic ligands containing ─CN, ─OH, ─COOH, ─phenyl (Ph), and ─CH3functional groups are investigated using ultraviolet and inverse photoemission spectroscopies, density functional theory calculations, and tight‐binding model analyses. The experimentally determined electronic gaps of the ─CN, ─COOH, ─Ph, and ─CH3based perovskites exhibit a strong correlation with the in‐plane Pb─I─Pb bond angle, while the ─OH based perovskite deviates from the linear trend. Based on the band structure calculations, this anomaly is attributed to the out‐of‐plane dispersion, caused predominantly by significant interlayer electronic coupling that is present in ─OH based perovskites. These results highlight the complex and diverse impacts of organic ligands on electronic properties, especially in terms of the involvement of strong interlayer electronic coupling. The impact of the bifunctional ligands on the evolution of the exciton binding energy is also addressed.

     
    more » « less
  3. Abstract

    Infrared (IR) thermal imaging is receiving a great deal of attention due to its wide range of applications. Given multiple issues (like cost and availability) with the inorganic materials currently exploited for IR imaging, there is nowadays a great push of developing organic imaging materials. Carbon‐based materials are known to have significant transparency in the visible and IR regions and some are used as transparent conductors. Here, whether π‐conjugated carbon‐based materials are suitable for long‐wave (LW) and mid‐wave (MW) IR imaging applications is computationally assessed. Using density functional theory calculations, the IR‐vibrational properties of molecules from acenes to coronenes and fullerenes, and of periodic systems like graphene and carbon nanotubes are characterized. Fullerenes, graphenes, and double‐walled carbon nanotubes are found to be very attractive as they are transparent in both the LWIR and MWIR regions, a feature resulting from the absence of hydrogen atoms. Also, it is found that replacing hydrogen atoms in a molecule with deuterium or sulfur atoms can be an efficient way to improve their LWIR or MWIR transparency, respectively. For fused‐ring systems having hydrogen atoms on the periphery, designing molecules with trio CH‐units is another way to enhance the transparency in the LWIR region.

     
    more » « less
  4. null (Ed.)
    The electronic, vibrational, and charge-transport properties of a series of benzothieno-benzothiophene (BTBT)–F m TCNQ ( m = 0, 2, 4) and diC n BTBT–F m TCNQ ( n = 8, 12; m = 0, 4) donor–acceptor (DA) co-crystals have been investigated by means of density functional theory calculations. The electronic-structure calculations predict wide conduction bands and small effective masses for electrons along the DA stacking directions. The results indicate that the increase in the number of F atoms on the acceptor molecules results in an increase of superexchange couplings along the DA stacks, while the addition of the alkyl side chains results in a decrease of through-space transfer integrals between neighboring stacks. Time-dependent density functional theory calculations of the optical properties describe the lowest two optical transitions as having a charge-transfer character and being related to the two electronic coupling pathways that contribute to the superexchange couplings. The results also indicate that the ionicity parameter in the diC n BTBT–F m TCNQ cocrystals is somewhat larger than in the BTBT analogues. Overall, we find that DFT calculations based on periodic boundary conditions are a reliable tool to estimate the ionicity parameter in DA cocrystals. 
    more » « less
  5. We have considered three two-dimensional (2D) π-conjugated polymer network ( i.e. , covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected via diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65–95 cm 2 V −1 s −1 . Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction, high-resolution transmission electron microscopy, and surface area analysis, which demonstrates the feasibility of these electroactive networks. Steady-state and flash-photolysis time-resolved microwave conductivity measurements on the zinc-porphyrin COF point to appreciable, broadband photoconductivity while transmission spectral measurements are indicative of extended π-conjugation. 
    more » « less
  6. Abstract

    The ability to passivate defects and modulate the interface energy‐level alignment (IEA) is key to boost the performance of perovskite solar cells (PSCs). Herein, we report a robust route that simultaneously allows defect passivation and reduced energy difference between perovskite and hole transport layer (HTL) via the judicious placement of polar chlorine‐terminated silane molecules at the interface. Density functional theory (DFT) points to effective passivation of the halide vacancies on perovskite surface by the silane chlorine atoms. An integrated experimental and DFT study demonstrates that the dipole layer formed by the silane molecules decreases the perovskite work function, imparting an Ohmic character to the perovskite/HTL contact. The corresponding PSCs manifest a nearly 20 % increase in power conversion efficiency over pristine devices and a markedly enhanced device stability. As such, the use of polar molecules to passivate defects and tailor the IEA in PSCs presents a promising platform to advance the performance of PSCs.

     
    more » « less
  7. Abstract

    The ability to passivate defects and modulate the interface energy‐level alignment (IEA) is key to boost the performance of perovskite solar cells (PSCs). Herein, we report a robust route that simultaneously allows defect passivation and reduced energy difference between perovskite and hole transport layer (HTL) via the judicious placement of polar chlorine‐terminated silane molecules at the interface. Density functional theory (DFT) points to effective passivation of the halide vacancies on perovskite surface by the silane chlorine atoms. An integrated experimental and DFT study demonstrates that the dipole layer formed by the silane molecules decreases the perovskite work function, imparting an Ohmic character to the perovskite/HTL contact. The corresponding PSCs manifest a nearly 20 % increase in power conversion efficiency over pristine devices and a markedly enhanced device stability. As such, the use of polar molecules to passivate defects and tailor the IEA in PSCs presents a promising platform to advance the performance of PSCs.

     
    more » « less